

Institute of Energy and Mechanical Engineering Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 7M07111 – "Digital Engineering of Machines and Equipment"

Code and classification of the field of education: Code and classification of training directions: Group of educational programs: Level based on NQF: Level based on IQF: Study period:	 7M07 – Engineering, manufacturing and civil engineering 7M071 – Engineering and engineering trades M103 – Mechanics and metal working 7 7 2 years
Study period: Amount of credits:	2 years 120

Almaty 2023

Educational program 7M07111 – "Digital Engineering of Machines and Equipment" was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # $\underline{3}$ dated « $\underline{24}$ » 10 20 $\underline{22}$.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes # $\underline{\mathcal{L}}$ dated « $\underline{\mathcal{H}}$ » <u>10</u> 20 $\underline{\mathcal{L}}$.

Educational program 7M07111 – "Digital Engineering of Machines and Equipment" was developed by Academic committee based on direction «Engineering and engineering trades»

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of Ac	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Associate Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	for
Teachingstaff:		*	<i>n</i>	
Eskulov Serik ≥han	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	fiff.
Myrzakhmetov Beibit	Candidate of Technical Sciences, Associate Professor	Professor	KazNRTU named after K.I. (Satbayev	Auf
Bortebayev Saiyn	Candidate of Technical Sciences, Associate Professor	Associate Professor	KazNRTU named after K.I. Satbayev	À
Employers:			ф	4
Kanatbayev Maksat	Master MBA	CEO	JSC "Almaty plant of heavy engineering"	2-
Students				
Tuberkulov Kazbek		2nd year Master's student	KazNRTU named after K.I. Satbayev	Diz

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	5
3.	Requirements for the evaluation of educational program learning	7
	outcomes	
4.	Passport of educational program	9
4.1.	General information	9
4.2.	Relationship between the achievability of the formed learning	11
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	21
		23

List of abbreviations and designations

NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY

named after K.I. SATBAYEV» – NCJS KazNRTU named after K. I. Satbayev; SOSE - State obligatory standard of education of the Republic of Kazakhstan; Kazakhstan; EP - educational program;

IWS - independent work of a student (student, undergraduate, doctoral student);

IWST - independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC - working curriculum;

CED - catalog of elective disciplines;

- UC university component;
- CC component of choice;

NQF - National Qualifications Framework; S

- QF Sectoral Qualifications Framework;
- LO learning outcomes;

KC - key competencies

1. Description of educational program

The educational program (EP) of higher vocational education ensures the implementation of the state educational standard taking into account the type of higher education institution, the educational needs and requests of students, and includes a working curriculum, syllabuses (work programs of training courses), disciplines (modules) and other materials the quality of the training of students, as well as the program of scientific and pedagogical practice, the schedule of educational schedule and methodological materials to ensure the implementation of relevant educational technology.

The main idea of the educational program is to implement a continuous process of preparing the scientific and pedagogical and professional personnel of the new generation who are capable of working to transform the new scientific potential of Kazakhstan from raw materials to innovative through the development and implementation of sustainable trends in the field of digital service and operational services.

The uniqueness of the study program "Digital Engineering of Machinery and Equipment" is determined by the competencies that the master has, having completed his education in this program.

The Master's Program is designed to facilitate the effective training of future specialists in the field of technical services on a comprehensive and integrated foundation. It is aimed at a deep understanding of the role of digital monitoring in the operation of machines and equipment in the mining, metallurgical, and oil and gas industries and their timely service at a high level.

The program prepares masters for activities in areas such as digital engineering of machinery and equipment, as well as strategic planning, analytical and advisory activities.

At the master's level, training in the specialty 7M07111 – Digital Engineering of Machinery and Equipment is carried out along trajectories involving the implementation of educational programs for training personnel in the oil, mining and metallurgical sectors with advanced technical, analytical and prognostic training.

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to prepare scientific, technical and engineering personnel with world-class competencies in the field of digital technologies based on the integration of fundamental physical-mechanical and practice-oriented engineering and technical education with research and development for the oil and gas, mining and metallurgical enterprises.

The objectives of the educational program are determined by the competencies acquired by graduates in the process of mastering the program at the university, and provide consumers with information about the areas of vocational training, the profile of the program and the types of professional activities for which graduates of this magistracy educational program are preparing. It reflects the features of the goals of educational training of specialists in the field of technical services with scientific and innovative thinking, owning advanced technologies in the modern operational and service industry, able to integrate in the conditions of global digital engineering and solving socially important tasks of the Kazakhstan and regional service market.

OP is focused on professional social order through the formation of specific competencies (scientific-pedagogical, professional) related to the necessary types of research and practical activities, adjusted to the requirements of employers.

The goal (mission) of the MA in the field of preparation 7M07111 "Digital engineering of machinery and equipment" proclaims the training of a specialist with:

- a set of personal qualities, scientific, pedagogical and professional competencies sufficient to form modern digital technical engineering in the country (region) for the operational and service industry and advanced organization of production activities;

- the ability to reasonably combine the commercial principles of business activity, the satisfaction of social needs in the services of enterprises in the oil, mining and metallurgical industries with the humanitarian tasks of personnel development and social values of Kazakhstani society.

In forming the objectives of the study program in the direction of "7M07109 - Digital engineering of machines and equipment" for the preparation of masters, the following are taken into account

Tasks of EP:

Task 1: Willingness of specialists to research and design work in the field of digital services in the process of operating technological machines, including related areas, choosing the necessary research methods, modifying existing and developing new equipment repair methods based on specific research objectives .

Task 2: Specialists' readiness for industrial and technological activities ensuring the introduction and operation of new digital developments at the local level.

Task 3: Willingness of specialists to search for and obtain new information necessary to solve professional problems in the field of knowledge integration in relation to their field of activity, to actively participate in the activities of an enterprise or organization.

Task 4: Specialists' readiness for scientific informational, ideological and problem communication in a professional environment and in a non-expert audience with a clear and deep substantiation of their position, to engage in organizational, managerial and service activities, to realize the responsibility for making their professional decisions.

Task 5: Specialists' readiness for self-learning and continuous professional development throughout the entire period of scientific or professional activity.

3. Requirements for evaluating the educational program learning outcomes

A graduate who has mastered the master's degree program should have the following general professional competencies:

- the ability to independently acquire, comprehend, structure and use in professional activities new knowledge and skills, develop their innovative abilities;

- the ability to independently formulate research goals, establish the sequence of solving professional tasks;

- the ability to put into practice the knowledge of fundamental and applied sections of the disciplines that determine the direction (profile) of the graduate program;

- the ability to professionally choose and creatively use modern scientific and technical equipment to solve scientific and practical problems;

- the ability to critically analyze, represent, protect, discuss and disseminate the results of their professional activities;

- Possession of skills for the preparation and execution of scientific and technical documentation, scientific reports, reviews, reports and articles;

- readiness to lead the team in their professional activities, tolerantly perceiving social, ethnic, confessional and cultural differences;

- readiness for communication in oral and written forms in a foreign language for solving problems of professional activity.

A graduate who has mastered the master's program must have professional competencies corresponding to the types of professional activity to which the master's program is oriented:

research activities:

- the ability to form diagnostic solutions to professional problems by integrating the fundamental sections of science and specialized knowledge gained in mastering the master's program;

- the ability to independently conduct scientific experiments and research in the professional field, summarize and analyze experimental information, draw conclusions, formulate conclusions and recommendations;

- the ability to create and explore models of the objects under study based on the use of in-depth theoretical and practical knowledge in the field of digital diagnostics of the state of equipment of mining, metallurgical and oil and gas production;

- research and production activities:

- the ability to independently carry out production and research and production of field, laboratory and interpretation work in solving practical problems;

- ability to professional exploitation of modern field and laboratory equipment and devices in the field of mastered master programs;

- the ability to use modern methods of processing and interpreting complex information to solve production problems;

- project activity:

- the ability to independently draw up and submit research and development projects;

- readiness to design complex research and production works in solving professional problems;

- organizational and management activities:

- readiness to use the practical skills of organizing and managing research and production works in solving professional problems;

- readiness for practical use of regulatory documents in the planning and organization of research and production work;

- scientific and educational activities:

- the ability to conduct seminars, laboratory and practical classes;

- ability to participate in the management of scientific and educational work of students in the field of digital technologies for diagnosing the state of the equipment of mining, metallurgical and oil and gas production.

When developing a master's program, all general cultural and general professional competencies, as well as professional competences related to the types of professional activities that the master's program is focused on, are included in the set of required mastering program results.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of the field of	7M07 – Engineering, manufacturing and civil
	education	engineering
2	Code and classification of training directions	7M071 – Engineering and engineering trades
3	Educational program group	M103 – Mechanics and metal working
4	Educational program name	Digital Engineering of Machines and Equipment
5	Short description of educational program	The educational program "Digital engineering of machines and equipment" covers the specialty "Technological machines and equipment" in the following industries: - metallurgical machines and equipment; - mining machines and equipment; - machines and equipment of the oil and gas industry
6	Purpose of EP	They are determined by the competencies acquired by graduates in the process of mastering the program at the university, and provide consumers with information about the areas of professional training, the profile of the program and the types of professional activities for which graduates of this master's degree program are preparing
7	Type of EP	updated
8	The level based on NQF	7
9	The level based on IQF	7
	Distinctive features of EP	no
11	List of competencies of educational program	Communication skills General engineering competencies Professional competencies Engineering and computer competencies Engineering and working competencies Socio-economic competencies Special professional competencies
12	Learning outcomes of educational program	 RO1: To demonstrate high professional qualities when performing research and design work in the field of digital services during the operation of technological machines, including in related areas related to the selection of necessary research methods. PO2: Demonstrate knowledge in the field of production and technological activities that ensure the introduction and operation of new digital developments at the local level. RO3: To choose methods of searching for new information necessary for solving professional tasks in the field of knowledge integration in relation to their field of activity. RO4: Apply knowledge to solve problems in the field of information and communication, organizational,

	managerial and service activities, be aware of the
	responsibility for making their professional decisions.
	RO5: Find time for self-study and continuous
	professional development during the entire period of
	scientific or professional activity.
	RO6: Possess a set of personal qualities, scientific,
	pedagogical and professional competencies sufficient
	for the formation of modern digital technical
	engineering in the country (region) for the operational
	and service industry and advanced organization of
	production activities.
	RO7: To demonstrate the ability to combine commercial
	principles of business activity, satisfaction of public
	needs in the services of enterprises of the oil, mining and
	metallurgical industries with humanitarian tasks of
	personnel development and social values of society
13 Education form	full-time
14 Period of training	2 years
15 Amount of credits	120
16 Languages of instruction	Kazakh, Russian
17 Academic degree awarded	Master of Technical Sciences
18 Developer(s) and authors	1. Director of the Institute of Energy and Mechanical
	Engineering, Yelemessov Kassym
	2. Head of the department "Technological machines and
	equipment", Eskulov Serik
	3. Professor, Myrzakhmetov Beibit
	4. Associate Professor, Bortebayev Saiyn
	5. Master MBA, Kanatbayev Maksat
	6. Teacher, Tagauova Raikhan

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

№	Discipline name	Short description of discipline	Amount		Ge	enerated le	arning out	comes (cod	es)	
	•		of credits	ON1	ON 2	ON 3	ON 4	ON 5	ON 6	ON 7
		Cycle of	basic discip	olines						
			ity compor							
1		The course is designed for undergraduates of	5					v		
		technical specialties to improve and develop								
		foreign language communication skills in								
	Foreign language	professional and academic fields. The course								
	(professional)	introduces students to the general principles of								
		professional and academic intercultural oral								
		and written communication using modern								
		pedagogical technologies.								
2		The course is aimed at teaching undergraduates	3				v			v
		the basics of management psychology. It will								
		consider the specifics of management								
		psychology, psychological patterns of								
		managerial activity, personality and its								
		potential in the management system;								
		motivation and effectiveness in the								
	Management	organization, leadership and leadership in								
	Psychology	modern management of organizations, social								
		group as an object of management,								
		psychological foundations of managerial								
		decision-making, business communication and								
		managerial conflicts, psychology of								
		responsibility, image creation, how an integral								
		part of the culture of communication, the								
		psychology of advertising.								
3		The subject of philosophy of science, dynamics	3							v
		of science, specifics of science, science and								
	History and philosophy	pre-science, antiquity and the formation of								
	of science	theoretical science, the main stages of the								
		historical development of science, features of								
		classical science, non-classical and post-non-								
		classical science, philosophy of mathematics,								1

	-		•		•		•	•	
		physics, engineering and technology, specifics							
		of engineering sciences, ethics of science,							
		social and moral responsibility of a scientist							
		and engineer.							
4		Undergraduates will master the methodological	3					v	v
		and theoretical foundations of higher school							
	TT' - 1 1 1	pedagogy, plan and organize the processes of							
	Higher school	teaching and upbringing, master the							
	pedagogy	communicative technologies of subject-subject							
		interaction between a teacher and a master in							
		the educational process of a university.							
		Cycle of I	basic disci	plines					
			nent of ch						
5	Intellectual Property	Purpose of studying the discipline Formation	5	v		v		v	
	Protection	of basic knowledge in the field of intellectual							
		property of undergraduates, training graduates							
		to solve professional problems related to the							
		registration of intellectual property rights and							
		their protection, obtaining theoretical							
		knowledge in the field of patent science and							
		the acquisition of practical skills in the							
		application of patent law as one of the							
		components of intellectual property rights in							
		Kazakhstan, the formation of a modern							
		scientific outlook for undergraduates, an							
		introduction to the methodology of scientific							
		research vany. The main objectives of the							
		discipline are: - The study of intellectual							
		property and laws in the field of intellectual							
		property protection; - Mastering ways to							
		protect the rights of intellectual property, as							
		well as the use of knowledge in the field of							
		intellectual property in organizational,							
		managerial, design and engineering activities							
6	Licensing and	At discipline studying theoretical and practical	5	v		v			
	copyright	preparation of the future masters concerning							
		tehniko-legal bases of the copyright, protection							
		"know-how" and licencing, a right protection							
		of objects of the industrial property, drawing							

		up and giving of patent demands and their examinations is carried out. Acquaintance to a role and value of objects and subjects of the copyright, conditions of patentability of the invention and industrial samples and possibilities of their licensing, gives the chance trained to master: sequence of registration of copyrights, maintenances of copyrights; ability to protect the right of authors and the patent of owners; ability to make registration of copyrights abroad; bases of a right protection and "know-how" protection						
7	Innovative installation and commissioning methods for machines and equipment	Advanced methods of installation, adjustment, diagnostics of technological equipment, innovative methods of testing, methods and types of diagnostics, installation work using modern methods and monitoring of the technical condition (welding, rolling, basic plumbing work, adjustment and adjustment work).	5	v				v
8	The system of full maintenance Technological machines and equipment	To get acquainted with promising innovative technologies and techniques in technological engineering. Expected results: Awareness of the need for professional development during their working life. The ability to formulate problems and use heuristic methods to solve them. The ability to critically use the methods of modern science in practice. The ability to assess the quality of advanced technologies and equipment in an expert manner. Ability to make a technical and economic comparison of various modifications of technological machines and equipment	5			v	v	
9	Innovative drives of machinery and equipment	Formation of a system of knowledge, skills and abilities among undergraduates in the field of design, operation, maintenance and evaluation of the technical condition of industrial machine drives. Study of the features of innovative designs, layout and operating modes of						

			-	-		1			
		mechanical, hydraulic and pneumatic drives of							
		mining, metallurgical and oil and gas							
		machines. Formation of skills and abilities to							
		assess the technical condition and residual life							
		of machine drives, apply methods for							
		calculating design and operating parameters of							
		innovative drives of technological machines.							
10	Innovative technologies	The course provides: concepts, terms and	5		v			v	
10	for monitoring and	definitions of technical diagnostics, structure	-						
	diagnosing the state of	and formulation of technical diagnostics tasks,							
	technological machines	statistical methods of fault recognition, non-							
	C C	destructive types and methods of control,							
		prediction of the residual life of equipment,							
		assimilation of basic concepts, terms and							
		definitions in the field of technical diagnostics							
		Cycle of p	rofilo disci	nling					
			ity compoi				1	1	
11		Instruments and digital methods for measuring	5	v		v			
		temperature, pressure, flow of liquids and							
		gases, linear and angular quantities,							
		measurement of forces and moments, non-							
		destructive testing of materials and substances,							
		motion parameters and composition,							
		composition of gases, chemical liquids, fuel							
		quality and oils. The choice of modern							
	Digital methods and	technical means of measuring and monitoring							
	means of measuring the	the parameters of technological machines,							
	parameters of	depending on their design and operating							
	technological machines	conditions. Assessment of the reliability of							
		measuring instruments. Rules of installation							
		and operation of technical measuring							
		instruments. Types of tests of technological							
		machines - control, research, parametric,							
		delivery, diagnostic, resource, etc. Test							
		benches and equipment. Assessment of the							
		technical condition of technological equipment							
		based on the test results.							
L					1		1		1

	_									
12		Formation of master students 'knowledge and skills in the application of digital methods for	5	v			v			
		predicting the technical condition and								
		reliability of objects, studying the basics of the								
		theory of diagnostics, studying the basic								
		concepts, techniques and innovative methods								
		for diagnosing the technical condition of parts,								
		mechanisms and products. Course objectives								
	Predictive maintenance	graduate students are determined by the								
	systems for process	requirements of the qualification characteristics								
	equipment	of the specialty and is aimed to teach								
		undergraduates to apply for digital computer								
		technology and forms of organization of								
		diagnostics in the maintenance and repair of								
		production machinery and equipment, as well								
		as use in the practice of critical assessment of								
		the technical condition of machinery and								
		equipment obtained with the use of digital								
		diagnostic equipment and indirectly.								
13		Formation of knowledge, skills and abilities in	5				v		v	
10		energy efficiency and energy saving in the								
		mining, metallurgical and oil and gas industries								
	Energy-saving	based on equipment and technologies for								
	technologies in the	automation and control, mastering knowledge								
	operation of	in the field of energy saving, mastering the								
	technological machines	principles and methods of energy saving as a								
	2	set of measures or actions taken to ensure								
		efficient use of energy resources and								
		technological equipment during their operation.								
			rofile disci	nlines			l			
			nent of cho	-						
14		To acquaint undergraduates with the use of	5			v		v		
		digital systems for designing technological								
	The use of digital	machines and equipment, modern digital								
	technology in the	developments and the main directions of								
	design and construction	development of digital designing and designing								
	of technological	technological machines, as well as with the								
	machines	technological preparation of their production.								
1		To give undergraduates knowledge in the field	1		1				1	

							1
		of digital systems for designing technological					
		machines and equipment for mining,					
		metallurgical and oil and gas production, to					
		acquaint with modern developments and main					
		directions of development of digital design of					
		technological machines and production					
		preparation.					
15		Study of methods of digital diagnostics, rules	5	v	v		
		and conditions of work in the field of	-				
		determining the technical condition of					
		equipment; obtaining practical skills in the use					
		of non-destructive testing methods to assess the					
1		technical condition and determine the residual					
		life of technological machines and equipment					
		of the mining and metallurgical and oil and gas					
		industries; the ability to calculate the reliability					
		of technological equipment and individual					
	Digital monitoring of	components and mechanisms, drives of					
	machines and	technological equipment and special devices;					
	equipment	to monitor the current parameters and actual					
	equipment	performance of technological equipment in					
		accordance with the requirements of regulatory					
		and technical documentation to identify					
		possible deviations; skills in diagnosing the					
		causes of possible malfunctions and system					
		failures to select methods and ways to					
		eliminate them; organization of work on					
		troubleshooting, equipment failures and repair					
		of technological equipment within their					
1.		competence.	~				
16		The discipline provides studying of questions	5		v		v
		of the organization and operation of the					
		enterprises on service of production complexes					
1	Intelligent management	of the technological equipment in system of					
	of technological	branch appointment. The purpose of teaching -					
	equipment complexes	the development of the methodology of					
		management of complex technological					
1		equipment of industrial enterprises of mining,					
		metallurgical and oil industries and methods of					

			n	1	0	1	1	
		calculation of their production capacity, as well as the study of optimal control algorithms of production systems in the maintenance of production facilities.						
17	Heattechnical equipment and power plants	The ability to integrate knowledge from different disciplines within and use them to solve production problems, to develop terms of reference for the design and manufacture of electrical equipment	5	v				v
18	Instrumentation and equipment technology machines and equipment	The course gives an idea of modern instrumentation and instrumentation of technological machines and equipment and covers the following topics: means of measuring and controlling weight, geometric, mechanical, electrical and magnetic quantities; temperature control; measurement of optical radiation; measurement of acoustic quantities; measurement and control of pressure, flow and quantity of gases and liquids; means liquid level measurements and alarms; gas and liquid analyzers; analyzers of the composition and physico-chemical properties of ore raw materials; selection of measurement and control tools.	5			v		v
19	Innovative technologies in the practice of maintenance and repair of technological machines	To get acquainted with promising innovative technologies and techniques in technological engineering. Awareness of the need for professional development during their working life. The ability to formulate problems and use heuristic methods to solve them. The ability to critically use the methods of modern science in practice. The ability to assess the quality of advanced technologies and equipment in an expert manner. Ability to make a technical and economic comparison of various modifications of technological machines and equipment	5	v		v		
20	Project Management	The discipline studies the components of project management based on modern behavioral models of project-oriented business	5	v				V

		development management. The program is						
		based on the international standards PMI						
		PMBOK, IPMA ICB and the standards of the						
		Republic of Kazakhstan in the field of project						
		management. The features of organizational						
		management of business development through						
		the interaction of strategic, project and						
	T	operational management are studied.	_				 	
21	Innovative methods for	The course is aimed at studying specialists with	5		v			v
	repairing machine parts	modern knowledge on the technology of						
		restoring specific parts of mining, metallurgical						
		and oil and gas production equipment. In the						
		process of mastering this discipline, students						
		become familiar with the principles of						
		choosing a rational technological process for						
		restoring and strengthening parts of mining,						
		metallurgical and oil and gas production,						
		depending on the type of wear.						
22	Theory and practice of	On the basis of studying of the given course the	5	v				v
	operation and repair of	master will receive representation about forms						
	hydro machines and	and methods of operation and repair of the oil						
	compressors	and gas equipment, features of their service						
		and repair in field conditions and bases of						
		industrial service. Will master the basic						
		receptions of operation and equipment repair;						
		rules of formation of industrial divisions, their						
		structure and acquisition by brigades. The						
		organisation of productions of structural						
		divisions. Forms and rules of interaction with						
		the foreign enterprises, specialisation and						
		cooperation in industrial activity. Knowledge						
		of these features will help fast adaptation of the						
		expert with practical activities, to carrying out						
		of the analysis of efficiency of activity of						
		various divisions.						
23	Innovative construction	A historical overview of the use of materials,	5			v	 v	
23	materials of	the basic concepts of materials: classification	5					
	technological machines	of modern materials (metallic and non-metallic						
		materials, ferrous and non-ferrous metals and						
		materials, terrous and non-terrous metals allu		 L	L			

	7				1	1	1	1	
		their alloys), areas of application of materials;							
		The main properties of materials: physical,							
		chemical, mechanical and technological,							
		structure of materials: crystallization process,							
		types of crystal lattices, phases in alloys; Alloy							
		state diagrams: state diagrams of double alloys,							
		state diagram of iron-carbon alloys; Heat							
		treatment of metals and alloys: the main types							
		of heat treatment, chemical-thermal and							
		thermomechanical treatment;							
24	Lubricants and	The course is aimed at studying the	5			v			v
	lubrication system for	hydrodynamic theory of lubrication, where the							
	technological machines	viscous flow for a Newtonian fluid, the basic							
	and equipment	equations of hydrodynamics, the continuity							
		equation, the equation of motion (the Navier-							
		Stokes equation) and the energy equation will							
		be considered. Issues related to modern							
		lubricants used in technology, their distinctive							
		qualitative properties, means and devices for							
		carrying out lubricating operations will also be							
		considered. During the practical classes,							
		calculations of the friction features in the							
		hydrodynamic lubrication mode, the presence							
		of a lubricating film between the rubbing							
		surfaces, friction problems in the							
		hydrodynamic lubrication mode according to							
		Couette's law will be carried out.							
25	Methods and means of	The course is aimed at familiarizing students	5	v	v			v	
_	scientific research	with theoretical and experimental research							
		methods, building their knowledge, skills and							
		abilities in the use of scientific research tools,							
		methods of searching and analyzing scientific							
		information. In the course of training,							
		undergraduates choose methods of planning							
		and organizing scientific research. They will							
		study and master the mechanism of scientific							
		search, analysis, conducting experiments,							
		organizing surveys, compiling questionnaires,							
		setting up and standards for the implementation							

	of research results. They receive results in the				
	development and preparation of documents for				
	scientific projects, reports, publications for				
	seminars and conferences				1

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

CURRICULUM of Educational Program on enrollment for 2023-2024 academic year

Educational program 7M07111 - "Digital Engineering of Machines and Equipment" Group of educational programs M103 - "Mechanics and metal working"

	Name of disciplines	Cycle	of study: 2 y Total	Total	Classroom	SIS	Academic de Form of		n of face-to-		based on	
Discipline			amount in	hours	amount	(including	control	courses and semes				
code			credits		lec/lab/pr	TSIS) in hours			urse		ourse	
						nours		1 semester	2 semester	3 semester	4 semester	
YCLE (OF BASIC DISCIPLINES (BI))										
			1-1. Modul	e of basic	c training (un	iversity con	ponent)					
NG210	Foreign language (professional)	BD UC	5	150	0/0/3	105	E	5				
HUM214 HUM212	Management Psychology	BD UC	3	90 90	1/0/1	60	E		3			
IUM212	History and philosophy of science Higher school pedagogy	BD UC BD UC	3	90	1/0/1 1/0/1	60 60	E	3	3	-		
10141213	Tright school pedagogy	BD OC			gineering Tr			5		1		
	1				ponent of ch		202					
'EC701	Intellectual Property Protection		5	150	2/0/1	105	E					
TEC702	Licensing and copyright	BD CCH	5	150	2/0/1	105	E	5			-	
LUIVE	Innovative installation and		2	150	2/0/1	105			-			
FEC297	commissioning methods for machines and equipment	BD CCH	5	150	2/0/1	105	Е	5	-			
FEC700	The system of full maintenance Technological machines and equipment	bbeen	5	150	2/0/1	105	Е					
TEC706	Innovative drives of machinery and equipment		5	150	2/0/1	105	Е					
TEC707	Innovative technologies for monitoring and diagnosing the state of technological machines	BD CCH	5	150	2/0/1	105	Е			5		
CYCLE	OF PROFILE DISCIPLINES	(PD)										
	M-2.	Module o	f profession	al activi	ty (university	component	, component	of choice)				
					of innovative							
TEC703	Digital methods and means of measuring the parameters of technological machines	PD UC	5	150	2/0/1	105	Е	5	-1			
TEC710	Predictive maintenance systems for process equipment	PD UC	5	150	2/0/1	105	E		5			
TEC709	Energy-saving technologies in the operation of technological machines	PD UC	5	150	2/0/1	105	Е			5		
				Con	ponent of ch	oice						
	The use of digital technology in					1						
TEC711	the design and construction of technological machines	PD CCH	5	150	2/0/1	105	E			5		
TEC705	Digital monitoring of machines and equipment		5	150	2/0/1	105	E				_	
TEC715	Intelligent management of technological equipment complexes	PD CCH	5	150	2/0/1	105	E		5			
TEC716	Heattechnical equipment and power plants		5	150	2/0/1	105	E					
TEC723	Instrumentation and equipment technology machines and equipment		5	150	2/0/1	105	E					
TEC719	Innovative technologies in the practice of maintenance and repair of technological machines	PD CCH	5	150	2/0/1	105	E		5			
MNG705	Project Management		5	150	2/0/1	105	E					
TEC713	Innovative methods for repairing machine parts		5	150	2/0/1	105	Е					
TEC714	Theory and practice of operation and repair of hydro machines and compressors	PD CCH	5	150	2/0/1	105	E			5		
TEC718	Innovative construction materials of technological machines	PDCCH	5	150	2/0/1	105	E			5		
TEC717	Lubricants and lubrication system		5	150	2/0/1	105	E					
177111			100000		 n.65000-00 		- 02C					

AAP269	Research practice	PD, CCH	8								8
			M	-4. Experi	mental resea	rch module					
TEC200	Methods and means of scientific research	PD UC	5	150	2/0/1	105	Е	5			
AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	2	_				2			
AAP241	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	3						3		
AAP254	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	5							5	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	14								14
				M-5. Mod	ule of final a	ttestation					
ECA212	Preparation and defense of a master's thesis	FA	8								8
	Total based on UNIVERSITY:			A1				30	30	30	30
								60	(i)	60	

	Number of credits for the en	tire perio	d of study		_			
	Cycles of disciplines	Credits						
Cycle code			university component (UC)	component of choice (CCH)	Total			
BD	Cycle of basic disciplines		20	15	35			
PD	Cycle of profile disciplines		24	29	53			
	Total for theoretical training:	0	44	44	88			
	RWMS				24			
FA	Final attestation	8			8			
	TOTAL:	8	44	44	120			

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol No 3 or "A4" 10 20 LLy.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol Na Lor "10 20 LLy.

Decision of the Academic Council of the Institute E&ME. Protocol No dor "11" 10 20 2hy.

Vice-Rector for Academic Affairs

Director of Institute of E&ME

Head of department TM&T

Representative of the Council from employers

B.A.Zhautikov K.K. Yelemessov S.A. Bortebayev M.A. Kanatbayev

F KazNRTU 703-05 Educational program

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of mastering the additional educational programs (Minor)

6. Additional educational programs (Minor)